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Abstract. Growth through ballistic aggregation and biased diffusion-limited aggregation 
is investigated on the Cayley tree. For a general branching ratio it is shown that the surface 
width of a ballistic aggregate remains finite (of order one) as the cluster mass goes to 
infinity. DLA with an attractive bias is treated approximately. For non-zero bias strength 
the surface width is asymptotically finite. In the limit of isotropic diffusion (zero bias) a 
roughening transition occurs which can be described in terms of a single diverging length 
scale. 

1. Introduction 

The surface properties of random aggregates have been the subject of several recent 
studies [l-91. The simplest models for aggregation are those where the probability of 
adding a new particle depends only on the local environment of the growth site. 
Popular examples are the Eden model [l-61 and ballistic aggregation [2,7,10]. In the 
Eden model, the new particle is added with equal probability to any empty perimeter 
site of the cluster. In ballistic aggregation, the particle moves along a straight line 
towards the cluster and sticks upon contact. While the bulk of such aggregates is 
compact, the surface shows interesting scaling properties. In analogy with critical 
phenomena, one expects the large-scale structure to depend only on some general 
features of the growth rule. Thus one attempts a classification of growth processes 
with regard to their scaling properties on large length and time scales. 

An important step in this direction was taken by Kardar, Parisi and Zhang, who 
described the dynamics of a growing surface by a non-linear Langevin equation (the 
KPZ equation) [9]. In two dimensions (or, equivalently, for a one-dimensional surface) 
the predictions of the KPZ equation agree well with numerical simulations of both the 
Eden model [4, 51 and ballistic aggregation [7]. This has leid to the suggestion that 
the two growth rules might belong to the same universality class [8]. However, the 
situation is much less clear in higher dimensions ( d  3 3). On the one hand, accurate 
numerical data become increasingly difficult to obtain [6,7]. On the other hand, the 
scaling properties of the KPZ equation are well understood only in two dimensions 

In view of this situation, it is natural to study local growth processes on the Cayley 
tree, which corresponds in some sense to the limit of infinite spatial dimensionality. 
It has been established both for the Eden model [ 141 and for ballistic aggregation [ 151 
on the Cayley tree that the radius R of a cluster grows with its mass, N, as R a In( N ) ,  
as one would expect for a compact object in d = 00. However, the surface properties 
of the two models turn out to be completely different. For the Eden model [14], the 
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width of the surface region was shown to diverge as R"*. In contrast, as I will 
demonstrate below in 9 3, the surface width is asymptotically $finite (of order one) for 
ballistic aggregation. A possible interpretation of this result in terms of the universality 
picture is proposed in 0 5 .  

Due to the absence of screening, the Eden model on the Cayley tree is in fact 
equivalent to diffusion-limited aggregation (DLA) [14]. By imposing a spatial bias in 
addition to the diffusive motion of the aggregating particle, one obtains a model which 
interpolates between DLA and ballistic aggregation [16-191. On the Cayley tree one 
expects, then, a transition in the surface structure as one passes from strongly biased 
diffusion (ballistic aggregation) to isotropic diffusion (Eden growth). Within a certain 
approximation, which will be explained in § 2, it is shown in § 4 that this 'roughening 
transition' occurs at zero bias strength. This is similar to the observed transition from 
compact to fractal bulk structure for biased DLA in two dimensions [16, 171. The 
crossover to isotropic diffusion can be described in terms of a single diverging length 
scale perpendicular to the surface. 

2. Cluster growth on the Cayley tree 

In this section the models of interest are introduced and the growth equations are set 
up. The presentation follows closely that of Vannimenus et a1 [14]. We consider a 
tree of constant branching ratio K 2 1 .  The levels are numbered by m = 
0, 1 , 2 , 3 , .  . . , and there are K" sites on level m. The total number of sites up to level 
m is therefore 

V ( m ) = ( K " - l ) / ( K - l ) .  (2.1) 

m o ( N )  =ln (N) / ln (K)+ ln (K - l ) / ln (K)  (2.2) 

Equivalently, a regular dense packing of N particles fills the tree up to the level 

where mo( N )  is the radius of a maximally compact cluster of mass N. It will be useful 
as a reference length when describing the structure of random aggregates below in 
00 3 and 4. 

The growth is initiated by placing a seed particle at the root ( m  = 0). The next 
particle is then introduced far away from the root. It performs a random walk on the 
tree and becomes part of the cluster when it reaches a growth site, i.e. an empty site 
which is the nearest neighbour of an occupied site. The diffusing particle may also 
escape to infinity, in which case it is discarded and a new particle is launched. To 
allow for biased diffusion, we let the particle go towards the root with probability a, 
and enter one ofthe K outgoing branches with probability ( 1  - a ) /  K. For a < 1/( 1 + K )  
the particle experiences a repulsive bias. The cluster radius was found numerically to 
grow linearly, R CC N, in this case [ 141. In the present paper I consider only the range 
of attractive bias, 1 / ( 1 +  K )  6 a S 1. The two limiting cases, cy = 1 and a = 1 / ( 1 +  K) ,  
correspond to ballistic aggregation and isotropic DLA, respectively. 

For a given cluster of N particles, we denote by a m ( N )  the number of occupied 
sites on level m, and by 

bm ( N I  = Kam- 1 ( N )  - am (NI (2.3) 
the number of growth sites on level m. Then obviously 

2 a m ( N ) = N  
m=O 

(2.4) 
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and from (2.3) 
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m 

b,(N) = ( K  - 1)N+ 1. 
m = l  

(2.5) 

We will mostly be concerned with the density of growth sites on level m :  

p , ( N )  = K-"b,(N). (2.6) 

Using (2.3) and a, = 1 one finds that the pm ( N )  are normalised: 
m 

The dynamics of growth is determined by the probability pm( N )  for the ( N  + 1)th 
particle to be captured at level m. It can be shown that [14] 

P m  ( N )  = (l/Z)q-'"bm( N )  (2.8) 

with 

and 
W 

Z =  q-mbm(N) .  
m = l  

(2.10) 

Note that (2.9) implies that DLA with strongly biased diffusion (a > f )  is equivalent to 
ballistic aggregation (a = 1 ) .  If a > f, the diffusing particle is certain to join the cluster. 
It will thus eventually stick at the root of the subtree of vacant sites into which it was 
launched, just as in ballistic aggregation. 

We are interested in quantities averaged over all realisations of the process, such 
as the average occupation numbers ( a m ( N ) ) .  They evolve according to 

(2.11) ( a m ( N  + 1)) - ( a m ( N ) )  = q-"(Z-'bm(N)) 

( a , ( N =  1) )=  s m o .  (2.12) 

with initial conditions 

Through 2 the growth probability p m ( N )  is a non-linear function of the a , ( N ) .  
Therefore the right-hand side of (2.11) cannot in general be expressed in terms of 
average occupation numbers. This is possible only in the limiting cases q = K (strongly 
biased diffusion or ballistic aggregation) and q = 1 (isotropic diffusion). For q = K, 
p m ( N )  = p m ( N )  and 2 = 1 by (2.7). Then (2.11) reduces to a linear recursion relation, 
which is in terms of p , ( N )  

( P m ( N +  1)) - ( P m ( N ) )  = K - ( m - ' ) ( p m - l ( N ) )  - K - " ( p m ( N ) ) *  (2.13) 

Similarly, for q = 1,  p m ( N )  = ( l / 2 ) b m ( N ) ,  which means that all growth sites have 
equal probability of being occupied. The growth rule thus reduces to the Eden model 
and 2 = ( K  - l)N+ 1, the total number of growth sites (2.5). This case was studied 
in detail by Vannimenus et a1 [14]. The growth equation (2.13) will be solved in the 
following section. 
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To make progress in the case of general q, the most obvious approximation [20] 
consists of replacing Z in (2.11) by its average (Z)(N). This then yields a non-linear 
recursion: 

( P m ( N  + l))-(pm(N)) = ( z > ( ~ ) - ' ( q - ' " - ' ' ( p m - 1 ( N ) )  - q - m ( p m ( N ) ) ) -  (2.14) 

It is instructive to derive this equation from a somewhat different point of view. To 
this end we redefine the growth process as follows. Instead of adding particles one 
by one, suppose that a growth site at level m is occupied independently with probability 
q-m ds  in the time interval ds. Then the growth site distribution evolves according to 

(2.15) 

where the double brackets indicate that we are now dealing with a different ensemble 
of realisations: while (2.11) and (2.13) hold for clusters of fixed mass N, the cluster 
mass at fixed time s is a random variable. The number of particles deposited in time 
ds  equals Zds.  As will be shown below, in (4.4), the average ( ( Z ) ) ( s )  grows as a power 
of s for q < K. According to the law of large numbers, one expects then the fluctuations 
in the cluster mass N (or equivalently in 2) to become small asymptotically. Neglecting 
these fluctuations altogether, the two timescales N and s are simply related by a change 
of variables 

d 
ds  - ( ( ~ m ( s ) ) ) =  q - ( m - ' ) ( ( p m - l ( s ) ) ) -  q - m ( ( p m ( s ) ) )  

d N / d s  = ((Z))(s) (2.16) 

and (2.15) becomes equivalent to (2.14). We see that the approximation effectively 
amounts to replacing a fluctuating timescale by its average, with the rationale that the 
relative fluctuations become negligible as the number of events (which equals the 
number of particles deposited per unit time) increases. While it seems difficult to give 
a rigorous justification for this approach, the results derived from it in 0 4 are both 
consistent and plausible. As (2.15) is equivalent to (2.13) with K replaced by q, the 
solution for the ballistic case ( q  = K )  obtained in 0 3 carries over directly to the general 
situation. 

3. Ballistic aggregation 

We want to solve (2.13) with the boundary condition (po( N ) )  = 0 and initial conditions 
(p,(l))  = 6,'. As we will be dealing exclusively with ensemble averages, the brackets 
are dropped in the following. It is convenient to introduce a continuous time variable 
t = N - 1 and rewrite (2.13) as 

d 
d t  (3.1) - pm ( t )  = K-("-')p, ,-1( t )  - K-'"p,( t ) .  

For m = 1 this implies 

pl ( t )  = exp(- t / io .  (3.2) 

Introducing the Laplace transform p,(z) of p , ( t ) ,  one obtains the recursion 
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for m L 2. Using the boundary condition ( 3 . 2 )  for m = 1 ,  this yields 
m 

p m ( z )  = ~ - m ( m - 1 ) / 2  n ( z + K - " ) - '  
, , = I  

The inverse transform of ( 3 . 4 )  is 

where T = t /  K and 

( 3 . 4 )  

As the terms in the sum ( 3 . 5 )  decreases rapidly with increasing j ,  the upper limit of 
summation may be replaced by infinity for large m. Likewise the factors Cm-,-l may 
then be set equal to 

C, = lim C,,. 
n-o0 

Thus asymptotically p , ( t )  depends on m only through the scaled time T, i.e. 

( 3 . 7 )  

with 

The moments of F K  can be computed from the Laplace transform ( 3 . 4 )  by evaluating 
derivatives with respect to z at z = 0. One finds 

( 3 . 1 0 a )  

( 3 . 1 0 b )  

( 3 . 1 0 ~ )  

A plot of F K  ( 7 )  for K = 2 is shown in figure 1 .  
Equation ( 3 . 8 )  implies that multiplying the cluster mass by K ,  i.e. adding one 

monolayer of particles, simply shifts the growth site distribution by one lattice constant. 
It follows that the first moment 

(3.11) 

grows as ln(t)/ ln(K).  R ( t )  is the average position of the active zone in the sense of 
RAcz and Plischke [ 1 1 .  Up to a constant, it is equal to the reference radius mo( t )  given 
by (2 .2) :  

(3 .12)  R ( t )  = mo( t )  - ro( K ) .  
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T 

Figure 1. Scaling function FK ( 7 )  for K = 2. The infinite sum (3.9) was truncated at j = 5. 
The truncation error is approximately 2-l'. 

This was already noted in [14,15]. Furthermore, the width of the active zone is 
asymptotically constant: 

a( t )*=(m2) ,  -(m):= V ~ ( K ) ~ .  (3.13) 

The constants ro( K )  and ao( K )  could in principle be derived from the scaling function 
(3.9). It is, however, more convenient to determine them through a consistency 
argument. In figure 2 the asymptotic profile (3.8) is compared with a direct numerical 
solution of (2.13). It is clear from the picture that p, ( t )  is well approximated by a 
Gaussian 

p m  ( t )  = ( 2 7 ~ ( ~ 3 - " ~  exp[ - ( m  - R( t))2/2ai3 (3.14) 

~ 

m 

Figure 2. Growth site distribution p , , ( N )  as a function of m for branching ratio K = 2  
and N = 213. The full curve represents the asymptotic surface profile (3.8); the stars were 
obtained by solving numerically the difference equation (2.13). 
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for large t. We use (3.14) to enforce the normalisation condition (2 .5)  for the total 
number of growth sites. Replacing the sum over m by an integral, one finds that ro 
and a, have to be related by 

r o ( K )  = a 0 ( ~ ) *  l n ( ~ ) / 2 .  (3.15) 

A second relation between ro and a. is obtained by inserting the ansatz (3.14) into 
(3.1) and computing the first moment directly from the growth equation. Consistency 
then requires that 

R ( t )  =ln( t ) / ln (K)+a~ln(K) /2+ln( ln(K)) / ln(K) .  (3.16) 

Together with (3.12) and (3.15) this yields 

u , ( K ) * =  [In(K - l ) - l n ( l n ( ~ ) ) ] / l n ( ~ ) ~ .  (3.17) 

Both (3.17) and (3.15) have been checked by solving (2.13) numerically for various 
values of K .  The agreement is excellent, which shows that the Gaussian approximation 
(3.14) is fully justified. 

Note that ro> 0 if a,> 0. Due to the roughening of the surface, the active zone 
lags behind the radius of a maximally compact cluster, m o ( t ) .  This shows that R ( t )  
is the radius of a dense core region of the cluster, which may contain only a small 
portion of the cluster mass if a, is large [ 141. Complementary to the inner radius R (  t ) ,  
the outer cluster radius i ( t )  can be defined as the first moment of the number (rather 
than the density) of growth sites at level m: 

m 

I?( t )  = [ t ( K  - 1)I-l mb,( t ) .  
m = l  

(3.18) 

Using again the Gaussian approximation (3.14) one finds 

i ( t ) -  m o ( t ) + r O ( K ) = R ( t ) + 2 r o ( K )  (3.19) 

which is now larger than ma. The distance - R = 2r0 is another measure for the 
width of the surface region. In the following I will, however, mostly use the moments 
(3.11) and (3.13) to characterise the cluster surface. 

Before ending this section, let me briefly discuss the bearing of the present results 
on a related model for directed DLA ( DDLA) on the Cayley tree, introduced by Bradley 
and Strenski [15]. In their version of DDLA, particles are injected at the root of the 
tree and execute a directed random walk, choosing randomly at each step one of the 
K outgoing branches. A particle joins the cluster when it reaches an empty site next 
to an occupied one. The model is well defined only on a -finite tree. Once the root 
site is filled, the cluster is complete. The basic quantity of interest is the probability 
W , ( N )  that the root of a tree with L levels is filled by the Nth  particle. Surprisingly, 
Bradley and Strenski found that W L ( N )  has a simple meaning also in the context of 
ballistic aggregation: it gives the probability that the ballistic aggregate -first reaches 
level L when the Nth particle is added to it. In the notation of 0 2 

(3.20) 

Since pm( N )  = pm( N )  for ballistic aggregation, we may apply the results for the growth 
site distribution to evaluate (3.20).  We also make use of the fact that W L ( N )  is 
concentrated at the very tip of the cluster, where p L (  N )  is small and L >> R( N ) .  With 
these simplifications, (3.20) can be transformed into 

(3.21) In( W L ( N ) )  = l n ( d  N ) )  - N p L ( N ) / 2 .  
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Inserting for p L  the Gaussian approximation (3.14), one finds that W,( N )  is concen- 
trated around the level number 

(3.22) 

which is indeed far ahead of the cluster radius R ( N ) .  From (3.22) the average density 
(which is the number of particles divided by the number of sites) of a completed DDLA 

cluster of L levels can be estimated. The density A(L) decays as 

(3.23) 

where a is some constant of order one. The decay is slower than geometric, as 
conjectured by Bradley and Strenski, but faster than a power law, I have checked that 
(3.23) provides a good fit to the numerical data presented in [15]. 

L,( N )  = In( N)/ ln(  K )  + ao( ~ ) ( 2  In( N ) )  ' I 2  

A (  L )  a exp( - a ~ ' / ' )  

4. Aggregation through biased diffusion 

For general q > 1 ,  the growth probability (2.8) decays exponentially on a length scale 

5 ( 4 )  = l / ln (s )  (4.1) 
on the lattice of level numbers, where 5 can be thought of as a correlation length 
perpendicular to the cluster surface. Growth sites in the interior of the cluster are 
strongly favoured, if their distance to the surface exceeds 6. Consequently, the surface 
region cannot widen indefinitely. Just as for ballistic aggregation, we expect then the 
growth site distribution to behave asymptotically as a travelling wave: 

p , ( N ) = G ( u  l n (N) -m)  (4.2) 
where the propagation speed U and the shape function G are to be determined. The 
correlation length diverges at q = 1,  corresponding to the anticipated roughening of 
the cluster surface ( a a R 1 1 2 )  in the limit of isotropic diffusion (Eden growth). In the 
following I will verify this picture for the approximate growth equation (2.14). 

From the results of the previous section we infer that the asymptotic solution to 
(2.15) is (all brackets are omitted) 

pm(s) F q ( S / q " ' ) *  (4.3) 

Z(s)= C(q ,  K)s ' l"- '  (4.4) 

Inserting this into (2.10) the average of 2 can be calculated: 

with v=ln(q) / ln(K)  and C is some constant. From (2.16) we obtain the relation 
between the timescales s and t = N - 1 :  

s = ( t / v C ) " .  (4.5) 

p , ( t ) =  G,(ln(t)/ ln(K)-ln(vC)/ln(K)-m) (4.6) 

The solution (4.3) can then be written in terms of t :  

(4.7) 
This confirms the form (4.2) and shows that U = l / ln (K)  independent of q. As for 
ballistic aggregation ( q  = K ) ,  the cluster radius (3.11) differs from the reference length 
mo(t)  only by a constant: 

R ( t ) =  mo(t)-ro(q)-ln(vC)/ln(K)= mo(t)-Fo(q, K ) .  (4.8) 
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The surface width (3.13) is given by (3.17) with K replaced by q. In the isotropic limit 
q + 1 it diverges as 

(4.9) ao(q)’= 1/(2 W q ) )  = 5(4)/2. 
The correction to the radius also diverges: 

i o ( %  K )  - l n ( K ) t ( q ) / 4  (4.10) 

for q+ 1. This is inconsistent with the results for the Eden model [14], q = 1; the 
correction io then becomes proportional to the radius R, and CT grows as RI/’. The 
asymptotic behaviour of F0 and go for q + 1 has been checked numerically by solving 
the approximate growth equation (2.14). 

The correlation length (( q )  can also be used to describe the temporal crossover of 
the surface width. For In( t )  << 5( q ) ,  the width grows proportional to In( t ) ” ’ ,  as in the 
isotropic case. For In( t )  >> (( q ) ,  it saturates at go( 9). This is summarised in the scaling 
form 

(4.11) 

where ai( t )  a In( t )  is the surface width of the isotropic (Eden) model. The scaling 
function satisfies f ( x  + m) = 1 by construction. Moreover, it follows from (4.9) that 
f ( x )  = x/2 for small x. Figure 3 shows some numerical data for the surface width, 
scaled according to (4.11). The scaling form is seen to hold over a large range in q. 

Finally I want to discuss the crossover of the asymptotic cluster density, defined by 

( t)’ = Vi ( t )  ’f( t( 4 / ai ( t )  ’1 

(4.12) 

Figure 3. Numerical data for the surface width obtained from the approximate growth 
equation (2.14) for K = 2  and various values of q. The ratio O ( N ) ’ / O , , ( N ) ~  is plotted as 
a function of [ ( q ) / a , ( N ) * .  The scaling form (4.11) requires the data to collapse onto a 
single curve. x,  q = 1.60; +, q = 1.40; A, q = 1.20; 0, q = 1.10; *, q = 1.05. 
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with the outer cluster radius I? given by (3.18), and the corresponding volume 
(equivalent to the number of sites) by (2.1). From (3.19) and (4.10) one obtains 

D ( ~ ,  K )  2: ~ - l n ( K ) t ( 4 ) / 4  (4.13) 

The density vanishes exponentially as 6 + CO. On a d-dimensional lattice, one would 
expect the density to scale as t-d, which is consistent with (4.13) for d =CO. At the 
critical point q = 1, the cluster density decays algebraically with N. Using the results 
of [ 141 one finds that D a 

(4.14) 

In summary, it has been shown in this section that the crossover from ballistic 
aggregation to isotropic DLA can be described in terms of a single correlation length 
&(q) .  The characterisation of the isotropic limit q = 1, 6 = CO as a critical point for the 
surface structure provides a natural explanation for the delicate surface properties 
found in [14]. Such critical behaviour is indeed to be expected, if, as conjectured in 
[ 141, q = 1 represents the borderline between compact (R cc In( N)) and linear ( R  a N) 
cluster growth. While the simplicity of the results could depend on the approximation 
(2.14), the general picture is expected to remain valid also for the full growth dynamics 

with 

y = K ln (K) / (K - 1) - 1. 

(2.11). 

5. Discussion 

The main conclusion of this paper is that the surface of a ballistic aggregate on the 
Cayley tree is smooth. This is in marked contrast to the Eden model on the same 
lattice. How can this result be reconciled with the idea that both processes are described 
by the KPZ equation? For spatial dimension d > 3 ,  the KPZ equation has a weak 
coupling regime, corresponding to a smooth surface, and a strong coupling regime 
where the surface presumably is rough [ l l ,  211. Recent work on the related problem 
of directed polymers with disorder suggests that both regimes persist even in the limit 
of infinite dimension [22]. It is therefore quite conceivable that ballistic aggregation 
on the Cayley tree belongs to the weak coupling regime, whereas the Eden model 
corresponds to strong coupling. If this picture proves correct, the difference between 
the two growth rules may show already on a finite-dimensional lattice with d > 3. 
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